Title: Scalable Localization-enabled In-body Terahertz Nanonetwork
Funding agency: Horizon 2020 (H2020) Marie Sklodowska-Curie Actions (MSCA)
Start date: June 1, 2020
Project duration: 2 years

Nanotechnology is paving the way toward nanodevices that will enable several groundbreaking healthcare applications. Nanodevices are expected to flow through the human body, perform actions at certain locations, and communicate monitoring results to the outside world. There is, therefore, a need to enable two-way communication between the nanodevices and the outside world, as well as their localization inside the body. These functionalities should be supported while simultaneously maintaining tiny form factors and a low energy consumption profile of a potentially vast number of nanodevices. In the ScaLeITN project, I will utilize wireless signals in the terahertz (THz) frequencies for enabling both localization and communication capabilities. Localization will be enabled through THz backscattering, which is an unexplored paradigm that promises low energy and high precision nanoscale localization. The constrained communication range characteristic for in-body propagation will be mitigated through multi-hopping, where only a selected subset of nanodevices in the multi-hop route will be awoken. Selection of relays will be based on their location estimates and energy lifecycle characterizations. This is again a novel paradigm that promises enabling low power and scalable nanocommunication. The main outcome is to develop a pioneering prototype of an in-body THz nanonetwork with both localization and two-way communication capabilities.